
Zimmerer et al. “Pruning in Snowflake: Working Smarter, Not Harder”, SIGMOD’25, Berlin

Pruning in Snowflake:
Working Smarter, Not Harder
Andreas Zimmerer, Damien Dam, Jan Kossmann, Juliane Waack, Ismail Oukid, Andreas Kipf

SIGMOD 2025, Berlin 

Welcome to Berlin



Zimmerer et al. “Pruning in Snowflake: Working Smarter, Not Harder”, SIGMOD’25, Berlin

Terminology: Partition Pruning

2

partition
/ pɑrˈtɪʃ ən, pər- /

noun:
- Table is split horizontally into partitions
- With columnar min/max metadata (zone maps)
- Independently loadable

synonyms:
(data-)block, row-group (Parquet)

pruning
/ ˈpru nɪŋ /

verb:
- Removing partitions from the scanset
- Based on external metadata
- Before data is fetched from storage

synonyms:
skipping, removing



Zimmerer et al. “Pruning in Snowflake: Working Smarter, Not Harder”, SIGMOD’25, Berlin

Why Is It Important?

3

● Reduced CPU time & reduced (network) IO 
→ speedups of more than 100x for real customer queries just due to this

● Better cardinality estimation
→ better join ordering and resource allocation

● Further query optimizations 
→ e.g., subquery elimination, join elimination, constant folding, …



Zimmerer et al. “Pruning in Snowflake: Working Smarter, Not Harder”, SIGMOD’25, Berlin

Disclaimer

4

1. Everything presented here also works with Iceberg tables in Snowflake.

2. All presented pruning techniques only require basic min/max metadata.

3. We look only at SELECT queries in this presentation (no DMLs).



Zimmerer et al. “Pruning in Snowflake: Working Smarter, Not Harder”, SIGMOD’25, Berlin

Quiztime!

5

How many % of partitions are pruned in Snowflake?
(across all customers and all query types)

99.4%
How?
(only with zone maps 
and smartness)



Zimmerer et al. “Pruning in Snowflake: Working Smarter, Not Harder”, SIGMOD’25, Berlin

The Pruning Flow

6

Query
Filter Pruning

…WHERE <filter>
→ throw out partitions 

containing irrelevant data

LIMIT Pruning
…LIMIT k
→ throw out 

superfluous partitions

Scanset

Join Pruning
→ throw out partitions 
without join partners

TopK Pruning
…ORDER BY <expr> LIMIT 

k
→ throw out partitions with

too small/large values

Query Optimizer

Execution Platform
(highly parallel)



Zimmerer et al. “Pruning in Snowflake: Working Smarter, Not Harder”, SIGMOD’25, Berlin

Filter Pruning

Problem: Predicates can be complex.
→ Pruning can take a significant amount of 
time during query optimization.

Is pruning worth it?

Solution:

● Adaptive re-ordering of pruning 
steps, prioritizing fast and effective 
expressions

● Defer pruning with slow expressions 
to highly parallel execution stage

7

name LIKE 'Marked-%-Ridge'
AND IF(unit='feet', altit * 0.3048, altit) > 1500

- Imprecise filter 
rewrites
- Support com- 
plex predicate 
trees

Common technique for simple predicates.
But it quickly becomes complex:



Zimmerer et al. “Pruning in Snowflake: Working Smarter, Not Harder”, SIGMOD’25, Berlin

Impact

Filter Pruning - Impact

8

50% of queries with predicates prune > 75%

Pruning ratios of SELECT queries with predicates:

better



Zimmerer et al. “Pruning in Snowflake: Working Smarter, Not Harder”, SIGMOD’25, Berlin

LIMIT Pruning

9

We all know:

1. Send query to execution platform

2. Execute query

3. Stop execution when k rows are in the result

Scanset (de)serialization
+ scheduling “heavy” query

Hidden costs:

Start X compute nodes
+ communication + fast abort

We might need to do this for selective predicates,
but we can do better if we know better.



Zimmerer et al. “Pruning in Snowflake: Working Smarter, Not Harder”, SIGMOD’25, Berlin

LIMIT Pruning

2.60% of SELECT queries are LIMIT queries, e.g.:

… WHERE timestamp > ‘2020-01-01’ LIMIT 10

10

> ‘2020-01-01’:

not (> ‘2020-01-01’):

=

Fully Matching

● Filter pruning will remove partitions < 2020
● Thousands of partitions might still remain
● We need only one “sufficient” partition to 

answer the query!



Zimmerer et al. “Pruning in Snowflake: Working Smarter, Not Harder”, SIGMOD’25, Berlin

TopK Pruning

5.55% of all SELECT queries are top-k queries, e.g.:

… [WHERE <filter>] ORDER BY c LIMIT k

11

Update pruning 
boundary

● Heap-based TopK processing: 
O(n log k) ≈ O(n)

● Prune with smallest value in TopK-heap
→ push down to table scan



Zimmerer et al. “Pruning in Snowflake: Working Smarter, Not Harder”, SIGMOD’25, Berlin

TopK Pruning

12

Challenges:

● Through which operators can we push this information (correctness)?
Probe side, build side of left outer join, filters, …

● Can we support GROUP BY … ORDER BY … LIMIT k?
Yes, in parts: GROUP BY c1, c2 ORDER BY c1 LIMIT k

● Taking things further: Smart scan order, pre-initialize the boundary value, ….



Zimmerer et al. “Pruning in Snowflake: Working Smarter, Not Harder”, SIGMOD’25, Berlin

TopK Pruning - Impact

13

SELECT queries with successfully 
applied TopK pruning

Runtime impact

Pruning ratios

better

better



Zimmerer et al. “Pruning in Snowflake: Working Smarter, Not Harder”, SIGMOD’25, Berlin

Join Pruning

14

Conceptually similar to SIP with Bloom-filters.

● Bloom-filters only allow row-wise filtering 
and therefore only save CPU time

● Snowflake summarizes the build side in a 
way that allows pruning on partition-level
➜ reduces both CPU time and IO

Join

HT Build

…

HT Probe

…

Scan

B
uild S

um
m

ary



Zimmerer et al. “Pruning in Snowflake: Working Smarter, Not Harder”, SIGMOD’25, Berlin

Join Pruning - Impact

15

Pruning ratios of SELECT queries that successfully used Join Pruning:

better



Zimmerer et al. “Pruning in Snowflake: Working Smarter, Not Harder”, SIGMOD’25, Berlin

Conclusion

16

Contact: andreas.zimmerer@utn.de

Aggressive partition pruning is a major 
performance driver for query processing.

We propose new specialized pruning 
techniques for LIMIT, TopK, and Join 
queries.

We assess the individual and combined 
impact of pruning techniques.


